Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Methyl 3-O-a-D-mannopyranosyl β-D-glucopyranoside tetrahydrate

Lars Eriksson ${ }^{\text {a }}$ and Göran Widmalm ${ }^{\text {b }}$

${ }^{\text {a }}$ Division of Structural Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, and ${ }^{\text {b }}$ Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
Correspondence e-mail: lerik@struc.su.se
Received 7 July 2008; accepted 10 July 2008
Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.025 ; w R$ factor $=0.060$; data-to-parameter ratio $=7.0$.

The title compound, $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{11} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, forms extended hydrogen-bonded networks. These are present between disaccharides, but not as inter-residue hydrogen bonds, as well as to water molecules that in addition form an intermolecular chain of hydrogen bonds. The conformation of the disaccharide is described by the glycosidic torsion angles $\varphi_{\mathrm{H}}=-34^{\circ}$ and $\psi_{\mathrm{H}}=-5^{\circ}$. Macroscopically, the disaccharide was observed to be hygroscopic.

Related literature

For related literature, see: Cremer \& Pople (1975); Eriksson \& Widmalm (2005); Eriksson et al. (1997, 2000, 2002); Färnbäck et al. (2003, 2008); Hassel \& Ottar (1947); Huskens (2006); Jansson et al. (1990); Juaristi \& Cuevas (1992); Odelius et al. (1995); Vishnyakov et al. (2000).

Experimental

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{11} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=428.39$
Monoclinic, $C 2$.
$V=1946.4$ (6) \AA^{3}
$Z=4$
$a=18.275$ (3) \AA
$b=7.7293$ (12) ${ }^{\circ} \AA$
Mo $K \alpha$ radiation
$b=13.910(3) \AA$
$c=1$
$\mu=0.14 \mathrm{~mm}^{-1}$
$\beta=97.87(2)^{\circ}$

Data collection

Stoe IPDS diffractometer
Absorption correction: numerical (X-RED; Stoe \& Cie, 1997)

$$
T_{\min }=0.95, T_{\max }=0.98
$$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.059$
$S=0.99$
2017 reflections
287 parameters
9 restraints

8973 measured reflections 2017 independent reflections 1706 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.13 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.14$ e \AA^{-3}

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{O} 5 m-\mathrm{C} 5 m-\mathrm{C} 6 m-\mathrm{O} 6 m$	$-64.9(2)$	$\mathrm{C} 4 g-\mathrm{C} 3 g-\mathrm{O} 3 g-\mathrm{C} 1 m$	$112.63(18)$
$\mathrm{C} 4 m-\mathrm{C} 5 m-\mathrm{C} 6 m-\mathrm{O} 6 m$	$57.2(2)$	$\mathrm{C} 2 g-\mathrm{C} 3 g-\mathrm{O} 3 g-\mathrm{C} 1 m$	$-124.11(18)$
$\mathrm{O} 5 g-\mathrm{C} 1 g-\mathrm{O} 1 g-\mathrm{C} 7$	$-71.2(2)$	$\mathrm{O} 5 g-\mathrm{C} 5 g-\mathrm{C} 6 g-\mathrm{O} 6 g$	$-69.7(2)$
$\mathrm{C} 2 g-\mathrm{C} 1 g-\mathrm{O} 1 g-\mathrm{C} 7$	$168.7(2)$	$\mathrm{C} 4 g-\mathrm{C} 5 g-\mathrm{C} 6 g-\mathrm{O} 6 g$	$50.1(2)$
$\mathrm{O} 5 m-\mathrm{C} 1 m-\mathrm{O} 3 g-\mathrm{C} 3 g$	$85.18(19)$	$\mathrm{H} 1 m-\mathrm{C} 1 m-\mathrm{O} 3 g-\mathrm{C} 3 g$	-34
$\mathrm{C} 2 m-\mathrm{C} 1 m-\mathrm{O} 3 g-\mathrm{C} 3 g$	$-151.40(15)$	$\mathrm{C} 1 m-\mathrm{O} 3 g-\mathrm{C} 3 g-\mathrm{H} 3 g$	-5

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 m-\mathrm{H} 2 m 1 \cdots \mathrm{O} 3 m^{\text {i }}$	0.82	1.96	2.732 (2)	156
$\mathrm{O} 3 m-\mathrm{H} 3 m 1 \cdots \mathrm{O} 6 m^{\text {ii }}$	0.82	1.89	2.705 (2)	172
$\mathrm{O} 4 m-\mathrm{H} 4 m 1 \cdots \mathrm{OW4} 4^{\text {iii }}$	0.82	2.03	2.803 (2)	158
$\mathrm{O} 6 m-\mathrm{H} 6 m \cdots \mathrm{OW} 3^{\text {iv }}$	0.82	2.00	2.796 (2)	166
$\mathrm{O} 2 \mathrm{~g}-\mathrm{H} 2 \mathrm{~g} 1 \cdots \mathrm{O} 4 m^{\text {v }}$	0.82	2.25	2.848 (2)	130
$\mathrm{O} 2 \mathrm{~g}-\mathrm{H} 2 \mathrm{~g} 1 \cdots \mathrm{O} 3 m^{v}$	0.82	2.43	3.140 (2)	145
$\mathrm{O} 4 \mathrm{~g}-\mathrm{H} 4 \mathrm{~g} 1 \cdots \mathrm{OW} 2^{\text {vi }}$	0.82	1.91	2.733 (2)	177
$\mathrm{O} 6 \mathrm{~g}-\mathrm{H} 6 \mathrm{~g} \cdots \mathrm{OW} 1^{\text {vi }}$	0.82	2.00	2.794 (2)	162
$\mathrm{OW} 1-\mathrm{H} 11 \cdots \mathrm{O} 4 \mathrm{~g}$	0.94 (2)	1.80 (2)	2.736 (2)	174 (4)
$\mathrm{OW} 1-\mathrm{H} 12 \cdots \mathrm{OW} 2$	0.97 (2)	1.92 (3)	2.834 (2)	156 (2)
$\mathrm{OW} 2-\mathrm{H} 21 \cdots \mathrm{OW} 3$	0.92 (2)	1.98 (2)	2.866 (2)	161 (4)
$\mathrm{OW} 2-\mathrm{H} 22 \cdots \mathrm{O} 2 g^{\text {vi }}$	0.90 (3)	2.06 (3)	2.915 (2)	159 (4)
OW3-H31 . $\mathrm{O}^{\text {1 }} \mathrm{g}^{\text {vii }}$	0.91 (3)	1.94 (3)	2.814 (2)	163 (4)
OW3-H32 . OW 4	0.90 (2)	1.92 (2)	2.807 (2)	167 (4)
OW4-H41 . $\mathrm{O} \mathrm{g}^{\text {vii }}$	0.89 (2)	2.04 (2)	2.916 (2)	168 (3)
$\mathrm{OW} 4-\mathrm{H} 42 \cdots \mathrm{O} 2 m^{\text {vi }}$	0.89 (2)	1.88 (3)	2.747 (2)	163 (4)
$\begin{aligned} & \text { Symmetry codes: (i) }-x, y,-z ; \quad \text { (ii) } x, y-1, z ; \\ & -x+\frac{1}{2}, y+\frac{1}{2},-z+1 ; ~\left(\text { iii) } \quad x-\frac{1}{2}, y+\frac{1}{2}, z-1 ; ~(\text { (iv) }\right. \\ & -x+\frac{1}{2}, y+\frac{1}{2},-z ; \\ & -x+1, y,-z+1 . \end{aligned}$				

Data collection: EXPOSE (Stoe \& Cie, 1997); cell refinement: CELL (Stoe \& Cie, 1997); data reduction: INTEGRATE (Stoe \& Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON (Spek, 2003).

This work was supported by a grant from the Swedish Research Council (VR).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2251).

References

Bergerhoff, G. (1996). DIAMOND. Bonn, Germany.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Eriksson, L., Stenutz, R. \& Widmalm, G. (1997). Acta Cryst. C53, 1105-1107.
Eriksson, L., Stenutz, R. \& Widmalm, G. (2000). Acta Cryst. C56, 702-704.
Eriksson, L., Stenutz, R. \& Widmalm, G. (2002). Acta Cryst. C58, o328-o329.
Eriksson, L. \& Widmalm, G. (2005). Acta Cryst. E61, o860-o862.

organic compounds

Färnbäck, M., Eriksson, L. \& Widmalm, G. (2003). Acta Cryst. C59, o171-o173. Färnbäck, M., Eriksson, L. \& Widmalm, G. (2008). Acta Cryst. C64, o31032.

Hassel, O. \& Ottar, B. (1947). Acta Chem. Scand. 1, 929-943.
Huskens, J. (2006). Curr. Opin. Chem. Biol. 10, 537-543.
Jansson, P.-E., Kenne, L., Persson, K. \& Widmalm, G. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 591-598.
Juaristi, E. \& Cuevas, G. (1992). Tetrahedron, 48, 5019-5087

Odelius, M., Laaksonen, A. \& Widmalm, G. (1995). J. Phys. Chem. 99, 1268612692.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1997). IPDS and X-RED. Stoe \& CIE GmbH, Darmstadt, Germany.
Vishnyakov, A., Widmalm, G. \& Laaksonen, A. (2000). Angew. Chem. Int. Ed. 39, 140-142.

supplementary materials

Methyl 3-O- $\boldsymbol{\alpha}$-D-mannopyranosyl $\boldsymbol{\beta}$-D-glucopyranoside tetrahydrate

L. Eriksson and G. Widmalm

Comment

Carbohydrates in biological systems, in the case of N -linked glycans of glycoproteins the result of post-translational modifications, are of functional significance due to e.g. their influence on protein stability. Furthermore, highly specific epitopes are formed by oligosaccharides present as glycoconjugates. The information contents in carbohydrate structures are indeed very large as a consequence of the immense numbers of permutations possible by combining different linkages and anomeric configurations of the sugar residues. It is of particular importance that the often weak carbohydrate interactions function by resorting to multivalent interactions upon cell-cell recognition (Huskens, 2006).

The major degrees of freedom in an oligosaccharide are described by the torsion angles $\varphi_{\mathrm{H}}, \psi_{\mathrm{H}}$, and ω. For the title compound the two former are present at the glycosidic $\alpha-(1 \rightarrow 3)$-linkage with φ_{H} being defined by $\mathrm{H} 1 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}$ and ψ_{H} by $\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{H} 3 \mathrm{~g}$. The ω torsion angle, defined by O5-C5-C6-O6, refers to the conformation of the hydroxymethyl group of each sugar residue. The structure is described as the exo-anomeric conformation with $\varphi_{\mathrm{H}}=-34^{\circ}$, which, as a result of stereoelectronic effects, is characteristic of sugars in a cyclic form (Fig. 1). For the title compound the presence of the endo-anomeric effect (Juaristi \& Cuevas, 1992) is evident from the difference in C-O bond lengths at the anomeric positions of the α-D-Manp residue having the axial bond $\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 3 \mathrm{~g}=1.409$ (2) \AA and the β-D-Glcp residue having the equatorial bond $\mathrm{C} 1 \mathrm{~g}-\mathrm{O} 1 \mathrm{~g}=1.402(2) \AA$, i.e., the bond with the axial electronegative atom is longer than the corresponding equatorial one, in complete agreement with ab initio data of model compounds (Odelius et al., 1995). At the glycosidic linkage $\psi_{\mathrm{H}}=-5^{\circ}$, leading to an almost eclipsed conformation and as a result the inter-residue distance across the glycosidic linkage for the proton pair H1m—H3g becomes short, only $2.12 \AA$.

The conformations of the hydroxymethyl groups are described by one of the three rotamers, gauche-trans, gauchegauche, or trans-gauche with respect to the orientation of $\mathrm{C} 6-\mathrm{O} 6$ to $\mathrm{C} 5-\mathrm{O} 5$ and to $\mathrm{C} 5-\mathrm{C} 4$, respectively. In the present case both the mannopyranosyl and the glucopyranosyl residues show the $g g$ conformation for their hydroxymethyl groups with $\omega=-64.9(2)^{\circ}$ and $\omega=-69.7(2)^{\circ}$, respectively. This conformation is one of the two anticipated rotamers for the monosaccharides in the title compound, since both have an equatorial hydroxyl group at C 4 , which precludes the $t g$ rotamer as a result of a non-favorable 1,3-diaxial interaction known as the Hassel-Ottar effect (Hassel \& Ottar, 1947).

The calculated Cremer \& Pople (1975) parameters show that both the mannose and glucose rings are close to the expected chair conformation, i.e. ${ }^{4} \mathrm{C}_{1}$. The parameters for the mannose ring are $\left[\mathrm{Q}=0.555(2) \AA, \theta=3.0(2)^{\circ}\right.$ and $\left.\varphi=302(3){ }^{\circ}\right]$ and for the glucose ring $\left[\mathrm{Q}=0.575\right.$ (2) $\AA, \theta=10.0(2)^{\circ}$ and $\left.\varphi=327(1)^{\circ}\right]$.

The title compound was quite hygroscopic. This fact is consistent with the relatively high water content in the crystal of the title disaccharide. In our previous structural studies on disaccharide crystals the number of water molecules ranged from zero to three per disaccharide (Eriksson et al. 1997, 2000, 2002, 2005; Färnbäck et al. 2003, 2008). All hydroxyl groups and all H atoms of the four water molecules are hydrogen bond donors and the structure is stabilized by an elaborate hydrogen bond network. The four water molecules can be considered as lying in channels along the b-direction between the sugar

supplementary materials

residues as shown in Fig. 2. Previous conformational studies on the title compound that focused on solution patterns in binary aqueous solvent mixtures indicated that an inter-residue hydrogen bond was present between O 6 m as the donor atom and O2g as the acceptor atom (Vishnyakov et al. 2000). This was possible when the ω torsion angle of the mannosyl residue had the gt conformation. However, in the present crystal structure the exo-cyclic hydroxymethyl groups of the glucosyl residue as well as that in the mannosyl residue have the gg conformation, the latter of which precludes the intra-molecular hydrogen bond. Further analysis of the hydrogen bonding patterns showed that O6m acts as a donor to OW3. The O6g atom, on the other hand, acts as a donor to OW1, which acts as a donor to OW2, continued in a donor-acceptor relationship to OW3, and in an analogous way to OW4. Finally, the latter water molecule acts as a donor to the acceptor O6g in another molecule. Thus, the water-mediated chain starts from one glucosyl residue and ends at a symmetry related glucosyl residue. Along the 'chain of water molecules' various atoms of the sugar residues act as hydrogen bond donors and acceptors. The close proximity of O 2 g in one molecule and O 3 m and O 4 m in a symmetry related molecule at distances of 3.140 (2) \AA and 2.848 (2) \AA, respectively, indicate that a bifurcated hydrogen bond is present with O 2 g as the donor atom. The triangle formed by the three oxygen atoms is almost isosceles with an $\mathrm{O} 3 \mathrm{~m}^{\mathrm{v}}-\mathrm{O} 2 \mathrm{~g}-\mathrm{O} 4 \mathrm{~m}^{\mathrm{v}}$ [symmetry code $(\mathrm{v}):-x+1 / 2, y+1 / 2,-z$] angle of $56.09(4)^{\circ}$.

Experimental

The synthesis of the title compound was described by Jansson et al. (1990). The disaccharide was crystallized by slow evaporation from a mixture of water, ethanol and acetonitrile ($1: 1: 1$) at ambient temperature. The absolute configuration of each sugar residue is known from the starting compounds used in the synthesis.

Refinement

The hydrogen atoms were geometrically placed and constrained to ride on the parent atom. The $\mathrm{C}-\mathrm{H}$ bond distances are $0.96 \AA$ for $\mathrm{CH}_{3}, 0.97 \AA$ for $\mathrm{CH}_{2}, 0.98 \AA$ for CH . The $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the CH_{3} and $1.2 U_{\text {eq }}(\mathrm{C})$ for all other H atoms. Due to the abscence of significant anomalous scatterers, the value of the Flack parameter (Flack, 1983) was not meaningful, thus the 1707 Friedel equivalents were included in the merging process (MERG 3 in SHELXL97). The H atoms of the water molecule were located from difference density map and the $\mathrm{d}(\mathrm{O}-\mathrm{H})$ were restrained to retain the previously known geometry of the water molecule. The hydrogen atoms of the water molecule were given $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Figures

Fig. 1. Molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. H atoms are shown as small spheres of arbitrary radii.

Fig. 2. Crystal packing of the title compound, showing slightly more than one unit cell, viewed along the b axis direction. The water molecules between the sugar residues are situated in channels along the b-direction.

Methyl 3-O- α-D-mannopyranosyl β-D-glucopyranoside tetrahydrate

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{11} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$F_{000}=920$
$M_{r}=428.39$
Monoclinic, C2
Hall symbol: C 2 y
$a=18.275$ (3) \AA
$b=7.7293$ (12) \AA
$c=13.910(3) \AA$
$\beta=97.87(2)^{\circ}$
$V=1946.4(6) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.462 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1641 reflections
$\theta=2.3-25.9^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Block, colourless
$0.40 \times 0.30 \times 0.15 \mathrm{~mm}$

Data collection

Stoe IPDS

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 6 pixels mm^{-1}
$T=291$ (2) K
φ scans
Absorption correction: numerical
(X-RED; Stoe \& Cie, 1997)
$T_{\text {min }}=0.95, T_{\text {max }}=0.98$
8973 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.059$
$S=0.99$
2017 reflections
287 parameters
9 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0391 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.13$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.14$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0054 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1m	$0.16629(10)$	$0.4371(3)$	$0.18727(14)$	$0.0237(4)$
H1m	0.1530	0.4374	0.2531	0.028^{*}
C2m	$0.11852(10)$	$0.3031(3)$	$0.12731(15)$	$0.0253(4)$
H2m	0.1312	0.1869	0.1525	0.030^{*}
O2m	$0.04476(7)$	$0.3436(2)$	$0.14055(11)$	$0.0354(4)$
H2m1	0.0161	0.2829	0.1047	0.053^{*}
C3m	$0.13077(10)$	$0.3138(3)$	$0.02186(15)$	$0.0231(4)$
H3m	0.1812	0.2752	0.0169	0.028^{*}
O3m	$0.08036(8)$	$0.2061(2)$	$-0.03918(11)$	$0.0297(3)$
H3m1	0.0874	0.1046	-0.0234	0.044^{*}
C4m	$0.12196(11)$	$0.4985(3)$	$-0.01623(14)$	$0.0246(4)$
H4m	0.0703	0.5351	-0.0193	0.030^{*}
O4m	$0.14398(9)$	$0.5051(2)$	$-0.11052(11)$	$0.0390(4)$
H4m1	0.1121	0.5547	-0.1478	0.059^{*}
C5m	$0.17184(10)$	$0.6189(3)$	$0.05093(14)$	$0.0251(4)$
H5m	0.2233	0.5838	0.0501	0.030^{*}
O5m	$0.15526(7)$	$0.60426(18)$	$0.14856(9)$	$0.0244(3)$
C6m	$0.16458(11)$	$0.8075(3)$	$0.02356(17)$	$0.0312(5)$
H6m1	0.1970	0.8747	0.0705	0.037^{*}
H6m2	0.1809	0.8234	-0.0394	0.037^{*}
O6m	$0.09124(8)$	$0.8723(2)$	$0.01954(13)$	$0.0393(4)$
H6m	0.0769	0.8585	0.0724	0.059^{*}
C1g	$0.41344(10)$	$0.5571(3)$	$0.33556(15)$	$0.0276(5)$
H1g	0.3968	0.6384	0.3821	0.033^{*}
O1g	$0.47702(7)$	$0.6210(2)$	$0.30165(10)$	$0.0340(4)$
C2g	$0.35400(10)$	$0.5359(3)$	$0.24839(15)$	$0.0288(5)$
H2g	0.3743	0.4734	0.1967	0.035^{*}
O2g	$0.32707(8)$	$0.6996(2)$	$0.21340(13)$	$0.0441(4)$
H2g1	0.3564	0.7431	0.1808	0.066^{*}
C3g	$0.28842(10)$	$0.4364(3)$	$0.27749(14)$	$0.0244(4)$
H3g	0.2609	0.5128	0.3159	0.029^{*}
O3g	$0.24034(6)$	$0.38309(19)$	$0.19220(10)$	$0.0268(3)$
C4g	$0.31150(10)$	$0.2760(3)$	$0.33673(14)$	$0.0251(4)$

sup-4

H4g	0.3316	0.1905	0.2954	0.030^{*}
O4g	$0.24809(7)$	$0.2055(2)$	$0.37211(11)$	$0.0330(4)$
H4g1	0.2383	0.1108	0.3470	0.050^{*}
C5g	$0.37025(10)$	$0.3225(3)$	$0.42143(15)$	$0.0278(4)$
H5g	0.3501	0.4101	0.4615	0.033^{*}
O5g	$0.43192(7)$	$0.3957(2)$	$0.38142(11)$	$0.0310(3)$
C6g	$0.39763(12)$	$0.1712(3)$	$0.48482(17)$	$0.0400(6)$
H6g1	0.4398	0.2075	0.5304	0.048^{*}
H6g2	0.3590	0.1348	0.5218	0.048^{*}
O6g	$0.41839(9)$	$0.0293(2)$	$0.42994(15)$	$0.0498(5)$
H6g	0.3866	-0.0460	0.4273	0.075^{*}
C7	$0.53302(12)$	$0.6785(4)$	$0.37756(18)$	$0.0435(6)$
H71	0.5146	0.7745	0.4109	0.065^{*}
H72	0.5760	0.7139	0.3499	0.065^{*}
H73	0.5459	0.5857	0.4225	0.065^{*}
OW1	$0.19300(11)$	$0.2972(3)$	$0.53816(17)$	$0.0612(5)$
H11	$0.2119(18)$	$0.274(5)$	$0.480(2)$	0.092^{*}
H12	$0.2364(15)$	$0.320(5)$	$0.585(2)$	0.092^{*}
OW2	$0.28912(11)$	$0.3894(3)$	$0.70793(15)$	$0.0564(5)$
H21	$0.3355(13)$	$0.361(5)$	$0.737(3)$	0.085^{*}
H22	$0.2615(18)$	$0.332(5)$	$0.747(3)$	0.085^{*}
OW3	$0.44168(10)$	$0.3766(3)$	$0.78999(16)$	$0.0577(5)$
H31	$0.4706(19)$	$0.463(4)$	$0.773(3)$	0.086^{*}
H32	$0.4659(19)$	$0.275(4)$	$0.787(3)$	0.086^{*}
OW4	$0.52138(11)$	$0.0800(3)$	$0.75157(14)$	$0.0540(5)$
H41	$0.5331(19)$	$0.061(5)$	$0.6924(19)$	0.081^{*}
H42	$0.4990(18)$	$-0.009(4)$	$0.776(3)$	0.081^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1m	$0.0207(8)$	$0.0279(11)$	$0.0223(10)$	$0.0007(8)$	$0.0020(7)$	$0.0011(8)$
C2m	$0.0215(9)$	$0.0253(11)$	$0.0285(11)$	$-0.0011(8)$	$0.0014(8)$	$0.0026(9)$
O2m	$0.0218(6)$	$0.0514(10)$	$0.0336(8)$	$-0.0102(7)$	$0.0067(6)$	$-0.0122(7)$
C3m	$0.0188(8)$	$0.0236(10)$	$0.0264(10)$	$0.0030(8)$	$0.0015(7)$	$-0.0035(9)$
O3m	$0.0329(7)$	$0.0208(7)$	$0.0322(8)$	$0.0033(6)$	$-0.0064(6)$	$-0.0024(6)$
C4m	$0.0258(9)$	$0.0262(11)$	$0.0218(10)$	$0.0034(8)$	$0.0026(8)$	$0.0008(9)$
O4m	$0.0518(9)$	$0.0410(10)$	$0.0261(8)$	$0.0069(8)$	$0.0118(7)$	$0.0037(7)$
C5m	$0.0227(9)$	$0.0258(10)$	$0.0273(10)$	$0.0015(8)$	$0.0049(8)$	$0.0029(9)$
O5m	$0.0255(7)$	$0.0238(7)$	$0.0236(7)$	$0.0009(6)$	$0.0023(5)$	$-0.0015(6)$
C6m	$0.0305(10)$	$0.0253(11)$	$0.0377(12)$	$-0.0014(9)$	$0.0045(9)$	$0.0040(10)$
O6m	$0.0382(8)$	$0.0271(8)$	$0.0528(10)$	$0.0086(7)$	$0.0070(7)$	$0.0084(8)$
C1g	$0.0230(9)$	$0.0328(12)$	$0.0277(10)$	$-0.0026(8)$	$0.0059(8)$	$0.0006(9)$
O1g	$0.0244(7)$	$0.0456(9)$	$0.0323(8)$	$-0.0101(7)$	$0.0056(6)$	$-0.0001(7)$
C2g	$0.0243(9)$	$0.0347(12)$	$0.0276(11)$	$-0.0026(9)$	$0.0046(8)$	$0.0048(9)$
O2g	$0.0347(8)$	$0.0448(10)$	$0.0522(11)$	$-0.0040(8)$	$0.0033(7)$	$0.0247(9)$
C3g	$0.0220(9)$	$0.0288(11)$	$0.0214(10)$	$-0.0010(8)$	$-0.0002(7)$	$-0.0002(9)$
O3g	$0.0202(6)$	$0.0349(8)$	$0.0238(7)$	$0.0044(6)$	$-0.0027(5)$	$-0.0025(7)$

C4g	$0.0218(9)$	$0.0272(11)$	$0.0263(10)$	$-0.0003(8)$	$0.0029(7)$	$0.0021(9)$
O4g	$0.0304(7)$	$0.0347(9)$	$0.0351(9)$	$-0.0087(7)$	$0.0082(6)$	$-0.0006(8)$
C5g	$0.0239(9)$	$0.0328(11)$	$0.0263(10)$	$-0.0007(8)$	$0.0023(8)$	$0.0020(9)$
O5g	$0.0213(6)$	$0.0361(8)$	$0.0348(8)$	$-0.0011(6)$	$0.0006(6)$	$0.0062(7)$
C6g	$0.0327(11)$	$0.0499(16)$	$0.0357(13)$	$0.0002(10)$	$-0.0017(9)$	$0.0120(11)$
O6g	$0.0454(9)$	$0.0424(10)$	$0.0628(12)$	$0.0112(8)$	$0.0112(9)$	$0.0138(9)$
C7	$0.0316(11)$	$0.0531(16)$	$0.0444(14)$	$-0.0129(11)$	$0.0001(9)$	$-0.0019(12)$
OW1	$0.0568(11)$	$0.0722(14)$	$0.0581(13)$	$-0.0008(10)$	$0.0205(9)$	$-0.0107(12)$
OW2	$0.0614(11)$	$0.0459(11)$	$0.0601(12)$	$0.0062(10)$	$0.0014(9)$	$0.0157(11)$
OW3	$0.0507(10)$	$0.0498(12)$	$0.0775(14)$	$-0.0013(9)$	$0.0270(10)$	$0.0152(11)$
OW4	$0.0581(11)$	$0.0581(13)$	$0.0474(11)$	$-0.0042(9)$	$0.0128(9)$	$0.0088(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 5 \mathrm{~m}$	$1.403(2)$
$\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 3 \mathrm{~g}$	$1.409(2)$
$\mathrm{C} 1 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}$	$1.527(3)$
$\mathrm{C} 1 \mathrm{~m}-\mathrm{H} 1 \mathrm{~m}$	0.9800
$\mathrm{C} 2 \mathrm{~m}-\mathrm{O} 2 \mathrm{~m}$	$1.420(2)$
$\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}$	$1.516(3)$
$\mathrm{C} 2 \mathrm{~m}-\mathrm{H} 2 \mathrm{~m}$	0.9800
$\mathrm{O} 2 \mathrm{~m}-\mathrm{H} 2 \mathrm{~m} 1$	0.8200
$\mathrm{C} 3 \mathrm{~m}-\mathrm{O} 3 \mathrm{~m}$	$1.431(2)$
$\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}$	$1.523(3)$
$\mathrm{C} 3 \mathrm{~m}-\mathrm{H} 3 \mathrm{~m}$	0.9800
$\mathrm{O} 3 \mathrm{~m}-\mathrm{H} 3 \mathrm{~m} 1$	0.8200
$\mathrm{C} 4 \mathrm{~m}-\mathrm{O} 4 \mathrm{~m}$	$1.425(2)$
$\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}$	$1.529(3)$
$\mathrm{C} 4 \mathrm{~m}-\mathrm{H} 4 \mathrm{~m}$	0.9800
$\mathrm{O} 4 \mathrm{~m}-\mathrm{H} 4 \mathrm{~m} 1$	0.8200
$\mathrm{C} 5 \mathrm{~m}-\mathrm{O} 5 \mathrm{~m}$	$1.436(2)$
$\mathrm{C} 5 \mathrm{~m}-\mathrm{C} 6 \mathrm{~m}$	$1.508(3)$
$\mathrm{C} 5 \mathrm{~m}-\mathrm{H} 5 \mathrm{~m}$	0.9800
$\mathrm{C} 6 \mathrm{~m}-\mathrm{O} 6 \mathrm{~m}$	$1.425(3)$
$\mathrm{C} 6 \mathrm{~m}-\mathrm{H} 6 \mathrm{~m} 1$	0.9700
$\mathrm{C} 6 \mathrm{~m}-\mathrm{H} 6 \mathrm{~m} 2$	0.9700
$\mathrm{O} 6 \mathrm{~m}-\mathrm{H} 6 \mathrm{~m}$	0.8200
$\mathrm{C} 1 \mathrm{~g}-\mathrm{O} 1 \mathrm{~g}$	$1.402(2)$
$\mathrm{C} 1 \mathrm{~g}-\mathrm{O} 5 \mathrm{~g}$	$1.421(3)$
$\mathrm{C} 1 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}$	$1.522(3)$
$\mathrm{C} 1 \mathrm{~g}-\mathrm{H} 1 \mathrm{~g}$	0.9800
$\mathrm{O} 1 \mathrm{~g}-\mathrm{C} 7$	$1.437(3)$
$\mathrm{C} 2 \mathrm{~g}-\mathrm{O} 2 \mathrm{~g}$	$1.419(3)$
$\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 3 \mathrm{~g}$	$112.22(16)$
$\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}$	$111.93(15)$
$\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 1 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}$	$107.40(16)$
$\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}-\mathrm{H} 1 \mathrm{~m}$	108.4
$\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 1 \mathrm{~m}-\mathrm{H} 1 \mathrm{~m}$	108.4
$\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}-\mathrm{H} 1 \mathrm{~m}$	

C2g-C3g	1.525 (3)
$\mathrm{C} 2 \mathrm{~g}-\mathrm{H} 2 \mathrm{~g}$	0.9800
$\mathrm{O} 2 \mathrm{~g}-\mathrm{H} 2 \mathrm{~g} 1$	0.8200
C3g-O3g	1.437 (2)
$\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}$	1.516 (3)
$\mathrm{C} 3 \mathrm{~g}-\mathrm{H} 3 \mathrm{~g}$	0.9800
$\mathrm{C} 4 \mathrm{~g}-\mathrm{O} 4 \mathrm{~g}$	1.428 (2)
$\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}$	1.524 (3)
$\mathrm{C} 4 \mathrm{~g}-\mathrm{H} 4 \mathrm{~g}$	0.9800
$\mathrm{O} 4 \mathrm{~g}-\mathrm{H} 4 \mathrm{~g} 1$	0.8200
C5g-O5g	1.439 (2)
C5g-C6g	1.508 (3)
C5g-H5g	0.9800
C6g-06g	1.417 (3)
C6g-H6g 1	0.9700
C6g-H6g2	0.9700
$\mathrm{O} 6 \mathrm{~g}-\mathrm{H} 6 \mathrm{~g}$	0.8200
C7-H71	0.9600
C7-H72	0.9600
C7-H73	0.9600
OW1-H11	0.94 (2)
OW1-H12	0.97 (2)
OW2-H21	0.92 (2)
OW2-H22	0.90 (2)
OW3-H31	0.91 (2)
OW3-H32	0.90 (2)
OW4-H41	0.89 (2)
OW4-H42	0.89 (2)
$\mathrm{H} 1 \mathrm{~m}-\mathrm{H} 3 \mathrm{~g}$	2.12
$\mathrm{C} 1 \mathrm{~g}-\mathrm{O} 1 \mathrm{~g}-\mathrm{C} 7$	113.67 (16)
$\mathrm{O} 2 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}$	110.69 (18)
$\mathrm{O} 2 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}$	107.01 (16)
$\mathrm{C} 1 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}$	110.13 (17)
$\mathrm{O} 2 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{H} 2 \mathrm{~g}$	109.7
$\mathrm{C} 1 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{H} 2 \mathrm{~g}$	109.7

supplementary materials

$\mathrm{O} 2 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}$	112.45 (16)
$\mathrm{O} 2 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}$	105.16 (16)
$\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}$	110.02 (15)
$\mathrm{O} 2 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{H} 2 \mathrm{~m}$	109.7
$\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{H} 2 \mathrm{~m}$	109.7
$\mathrm{C} 1 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{H} 2 \mathrm{~m}$	109.7
$\mathrm{C} 2 \mathrm{~m}-\mathrm{O} 2 \mathrm{~m}-\mathrm{H} 2 \mathrm{~m} 1$	109.5
$\mathrm{O} 3 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}$	111.96 (16)
$\mathrm{O} 3 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}$	108.06 (15)
$\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}$	111.41 (16)
$\mathrm{O} 3 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{H} 3 \mathrm{~m}$	108.4
$\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{H} 3 \mathrm{~m}$	108.4
$\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{H} 3 \mathrm{~m}$	108.4
C3m-O3m-H3m1	109.5
$\mathrm{O} 4 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}$	108.92 (16)
$\mathrm{O} 4 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}$	108.71 (16)
C3m-C4m-C5m	109.40 (15)
$\mathrm{O} 4 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{H} 4 \mathrm{~m}$	109.9
C3m-C4m-H4m	109.9
C5m-C4m-H4m	109.9
$\mathrm{C} 4 \mathrm{~m}-\mathrm{O} 4 \mathrm{~m}-\mathrm{H} 4 \mathrm{ml}$	109.5
O5m-C5m-C6m	107.01 (16)
$\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}$	110.16 (15)
C6m-C5m-C4m	114.19 (17)
$\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}-\mathrm{H} 5 \mathrm{~m}$	108.4
C6m-C5m-H5m	108.4
C4m-C5m-H5m	108.4
C1m-O5m-C5m	113.43 (15)
O6m-C6m-C5m	113.55 (17)
O6m-C6m-H6m1	108.9
C5m-C6m-H6m1	108.9
O6m-C6m-H6m2	108.9
C5m-C6m-H6m2	108.9
H6m1-C6m-H6m2	107.7
C6m-O6m-H6m	109.5
$\mathrm{O} 1 \mathrm{~g}-\mathrm{Clg}-\mathrm{O} 5 \mathrm{~g}$	107.66 (15)
O1g- $\mathrm{Cl} \mathrm{g}-\mathrm{C} 2 \mathrm{~g}$	107.69 (16)
$\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}$	111.29 (17)
$\mathrm{O} 1 \mathrm{~g}-\mathrm{Clg}-\mathrm{Hlg}$	110.0
$\mathrm{O} 5 \mathrm{~g}-\mathrm{Clg}-\mathrm{Hlg}$	110.0
$\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}-\mathrm{H} 1 \mathrm{~g}$	110.0
$\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{O} 2 \mathrm{~m}$	-67.68 (19)
$\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 1 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{O} 2 \mathrm{~m}$	168.72 (15)
$\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}$	53.6 (2)
$\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 1 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}$	-70.0 (2)
$\mathrm{O} 2 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{O} 3 \mathrm{~m}$	-55.7 (2)
$\mathrm{C} 1 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{O} 3 \mathrm{~m}$	-172.58(15)
$\mathrm{O} 2 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}$	65.4 (2)
$\mathrm{C} 1 \mathrm{~m}-\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}$	-51.4 (2)

$\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{H} 2 \mathrm{~g}$	109.7
$\mathrm{C} 2 \mathrm{~g}-\mathrm{O} 2 \mathrm{~g}-\mathrm{H} 2 \mathrm{~g} 1$	109.5
$\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}$	107.92 (16)
$\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}$	109.85 (16)
$\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}$	112.73 (16)
$\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{H} 3 \mathrm{~g}$	108.8
$\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{H} 3 \mathrm{~g}$	108.8
$\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{H} 3 \mathrm{~g}$	108.8
$\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}$	115.46 (15)
$\mathrm{O} 4 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}$	108.71 (15)
$\mathrm{O} 4 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}$	110.03 (16)
$\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}$	109.96 (16)
$\mathrm{O} 4 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{H} 4 \mathrm{~g}$	109.4
$\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{H} 4 \mathrm{~g}$	109.4
$\mathrm{C} 5 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{H} 4 \mathrm{~g}$	109.4
$\mathrm{C} 4 \mathrm{~g}-\mathrm{O} 4 \mathrm{~g}-\mathrm{H} 4 \mathrm{~g} 1$	109.5
O5g-C5g-C6g	108.43 (16)
$\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}$	107.44 (16)
C6g-C5g-C4g	114.28 (18)
O5g-C5g-H5g	108.9
C6g-C5g-H5g	108.9
$\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}-\mathrm{H} 5 \mathrm{~g}$	108.9
$\mathrm{C} 1 \mathrm{~g}-\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}$	111.60 (14)
O6g-C6g-C5g	112.14 (19)
O6g-C6g-H6g1	109.2
$\mathrm{C} 5 \mathrm{~g}-\mathrm{C} 6 \mathrm{~g}-\mathrm{H} 6 \mathrm{~g} 1$	109.2
O6g-C6g-H6g2	109.2
$\mathrm{C} 5 \mathrm{~g}-\mathrm{C} 6 \mathrm{~g}-\mathrm{H} 6 \mathrm{~g} 2$	109.2
$\mathrm{H} 6 \mathrm{~g} 1-\mathrm{C} 6 \mathrm{~g}-\mathrm{H} 6 \mathrm{~g} 2$	107.9
C6g-O6g-H6g	109.5
O1g-C7-H71	109.5
O1g-C7-H72	109.5
H71-C7-H72	109.5
$\mathrm{O} 1 \mathrm{~g}-\mathrm{C} 7-\mathrm{H} 73$	109.5
H71-C7-H73	109.5
H72-C7-H73	109.5
H11-OW1-H12	105 (3)
H21-OW2-H22	100 (3)
H31-OW3-H32	109 (3)
H41-OW4-H42	114 (4)
$\mathrm{O} 1 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}$	169.66 (17)
$\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}$	51.9 (2)
$\mathrm{O} 2 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{O} 3 \mathrm{~g}$	72.5 (2)
$\mathrm{C} 1 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{O} 3 \mathrm{~g}$	-167.17 (16)
$\mathrm{O} 2 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}$	-167.15 (17)
$\mathrm{C} 1 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}$	-46.8 (2)
$\mathrm{O} 5 \mathrm{~m}-\mathrm{Clm}-\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}$	85.18 (19)
$\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}$	-151.40 (15)

$\mathrm{O} 3 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{O} 4 \mathrm{~m}$	$-64.6(2)$
$\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{O} 4 \mathrm{~m}$	$172.00(15)$
$\mathrm{O} 3 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}$	$176.70(14)$
$\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}$	$53.31(19)$
$\mathrm{O} 4 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}-\mathrm{O} 5 \mathrm{~m}$	$-175.11(16)$
$\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}-\mathrm{O} 5 \mathrm{~m}$	$-56.29(19)$
$\mathrm{O} 4 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}-\mathrm{C} 6 \mathrm{~m}$	$64.5(2)$
$\mathrm{C} 3 \mathrm{~m}-\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}-\mathrm{C} 6 \mathrm{~m}$	$-176.72(17)$
$\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}$	$61.40(19)$
$\mathrm{C} 2 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}$	$-59.44(19)$
$\mathrm{C} 6 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}-\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}$	$-174.57(16)$
$\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}-\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}$	$60.76(18)$
$\mathrm{O} 5 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}-\mathrm{C} 6 \mathrm{~m}-\mathrm{O} 6 \mathrm{~m}$	$-64.9(2)$
$\mathrm{C} 4 \mathrm{~m}-\mathrm{C} 5 \mathrm{~m}-\mathrm{C} 6 \mathrm{~m}-\mathrm{O} 6 \mathrm{~m}$	$57.2(2)$
$\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}-\mathrm{O} 1 \mathrm{~g}-\mathrm{C} 7$	$-71.2(2)$
$\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}-\mathrm{O} 1 \mathrm{~g}-\mathrm{C} 7$	$168.7(2)$
$\mathrm{O} 1 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{O} 2 \mathrm{~g}$	$-72.2(2)$
$\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}-\mathrm{C} 2 \mathrm{~g}-\mathrm{O} 2 \mathrm{~g}$	$170.02(16)$

$\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 1 \mathrm{~m}$	$112.63(18)$
$\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 1 \mathrm{~m}$	$-124.11(18)$
$\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{O} 4 \mathrm{~g}$	$-66.67(19)$
$\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{O} 4 \mathrm{~g}$	$171.85(17)$
$\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}$	$172.82(14)$
$\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}$	$51.3(2)$
$\mathrm{O} 4 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}-\mathrm{O} 5 \mathrm{~g}$	$-178.89(16)$
$\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}-\mathrm{O} 5 \mathrm{~g}$	$-59.2(2)$
$\mathrm{O} 4 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}-\mathrm{C} 6 \mathrm{~g}$	$60.8(2)$
$\mathrm{C} 3 \mathrm{~g}-\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}-\mathrm{C} 6 \mathrm{~g}$	$-179.52(18)$
$\mathrm{O} 1 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}-\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}$	$178.17(15)$
$\mathrm{C} 2 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}-\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}$	$-64.0(2)$
$\mathrm{C} 6 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}-\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}$	$-169.21(17)$
$\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}-\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 1 \mathrm{~g}$	$66.8(2)$
$\mathrm{O} 5 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}-\mathrm{C} 6 \mathrm{~g}-\mathrm{O} 6 \mathrm{~g}$	$-69.7(2)$
$\mathrm{C} 4 \mathrm{~g}-\mathrm{C} 5 \mathrm{~g}-\mathrm{C} 6 \mathrm{~g}-\mathrm{O} 6 \mathrm{~g}$	$50.1(2)$
$\mathrm{H} 1 \mathrm{~m}-\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}$	-34
$\mathrm{C} 1 \mathrm{~m}-\mathrm{O} 3 \mathrm{~g}-\mathrm{C} 3 \mathrm{~g}-\mathrm{H} 3 \mathrm{~g}$	-5

Hydrogen-bond geometry (\AA, $\left.{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	D-H	H \cdots	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 \mathrm{~m}-\mathrm{H} 2 \mathrm{ml} \cdots \mathrm{O}^{\text {m }}{ }^{\text {i }}$	0.82	1.96	2.732 (2)	156
$\mathrm{O} 3 \mathrm{~m}-\mathrm{H} 3 \mathrm{~m} 1 \cdots \mathrm{O} 6 \mathrm{~m}^{\text {ii }}$	0.82	1.89	2.705 (2)	172
$\mathrm{O} 4 \mathrm{~m}-\mathrm{H} 4 \mathrm{~m} 1 \cdots$ OW $4{ }^{\text {iii }}$	0.82	2.03	2.803 (2)	158
O6m-H6m $\cdots \mathrm{OW} 3{ }^{\text {iv }}$	0.82	2.00	2.796 (2)	166
$\mathrm{O} 2 \mathrm{~g}-\mathrm{H} 2 \mathrm{~g} 1 \cdots \mathrm{O} 4 \mathrm{~m}^{\text {v }}$	0.82	2.25	2.848 (2)	130
$\mathrm{O} 2 \mathrm{~g}-\mathrm{H} 2 \mathrm{~g} 1 \cdots \mathrm{O} 3 \mathrm{~m}^{\text {v }}$	0.82	2.43	3.140 (2)	145
$\mathrm{O} 4 \mathrm{~g}-\mathrm{H} 4 \mathrm{~g} 1 \cdots \mathrm{OW} 2{ }^{\text {vi }}$	0.82	1.91	2.733 (2)	177
O6g-H6g \cdots OW $1^{\text {vi }}$	0.82	2.00	2.794 (2)	162
OW1-H11 \cdots O4g	0.94 (2)	1.80 (2)	2.736 (2)	174 (4)
OW1-H12 \cdots OW2	0.97 (2)	1.92 (3)	2.834 (2)	156 (2)
OW2-H21ㅇ.OW3	0.92 (2)	1.98 (2)	2.866 (2)	161 (4)
OW2-H22 \cdots O2g ${ }^{\text {vi }}$	0.90 (3)	2.06 (3)	2.915 (2)	159 (4)
OW3-H31 \cdots O1g ${ }^{\text {vii }}$	0.91 (3)	1.94 (3)	2.814 (2)	163 (4)
OW3-H32 \cdots OW4	0.90 (2)	1.92 (2)	2.807 (2)	167 (4)
OW4-H41 \cdots O6g ${ }^{\text {vii }}$	0.89 (2)	2.04 (2)	2.916 (2)	168 (3)
OW4-H42 ${ }^{\text {O }}$ 2m ${ }^{\text {vi }}$	0.89 (2)	1.88 (3)	2.747 (2)	163 (4)

Symmetry codes: (i) $-x, y,-z$; (ii) $x, y-1, z$; (iii) $x-1 / 2, y+1 / 2, z-1$; (iv) $-x+1 / 2, y+1 / 2,-z+1$; (v) $-x+1 / 2, y+1 / 2,-z$; (vi) $-x+1 / 2, y-1 / 2$, $-z+1$; (vii) $-x+1, y,-z+1$.

Fig. 1

Fig. 2

